Clinical (Cookbook) Neuroanesthesia

Reza Gorji, M.D.
Director of Neuroanesthesia
University Hospital
Syracuse, New York
Neuroanesthesia

- Anesthesia and craniotomy for mass lesions
- Anesthesia and craniotomy for aneurysm
- Posterior fossa craniotomy
- Carotid endarterectomy
- GDC
- Trigeminal Decompression
- Brain Biopsy
- Not covered: spine surgery, transphenoidal procedures, awake cranis, closed head injury
Neuroanesthesia

- Anesthesia for (intracranial) neuroanesthesia requires understanding of relationships between CeBF, CMRO2, and ICP
- We use techniques and drugs that manipulate these relationships to make surgery and anesthesia successful and safe
- We do make a difference; when problems occur, the basics are usually violated
Anesthesia and craniotomy for mass lesions

- Intracranial masses may be congenital, infectious, neoplastic or vascular (ie: clots)
- Signs of high ICP present (N/V, HTN, bradycardia, personality changes, consciousness level, papilledema, seizures)
- Growth rate of mass can be guessed from rapidity of symptoms
- Intracranial compliance curve; effect of slow versus fast volume expansion
Anesthesia and craniotomy for mass lesions
Preoperative evaluation

- Typical history and physical
- Obtain neurological history
- Ascertain presence of high ICP
- SMA⁷ to look of corticosteroid induced hyperglycemia, diuretic induce electrolyte abnormalities; anticonvulsant levels
- CT/MRI for presence of edema, midline shift, location of mass (deep or superficial)
Anesthesia and craniotomy for mass lesions
Premedication

- Premeds include benzodiazepines, corticosteroids, anticonvulsants, diuretics and whatever else is needed to make the patient ready for surgery
- Watch for signs of hypoxia and hypoventilation
Anesthesia and craniotomy for mass lesions
Intraoperative Management
Monitoring

- ASA monitors
- A-line: Positioning, rapid changes in BP, access for electrolytes and PaO\textsubscript{2} and PaCO\textsubscript{2}
- Central Access
 - Where and why?
 - When and why?
- Foley Monitor: Yes
- NMB Monitor: Yes; No MOVEMENT ALLOWED W/ HEAD CLAMPS OR NOT
- Neurologic Monitors as needed: EPs, EEGs, ICP Monitor* (Zero the ICP monitor at the EAM)
Anesthesia and craniotomy for mass lesions

Induction

- A critical part of the case
- Goals: Minimize raising ICP and maintaining CeBF
- Technique:
 - Hyperventilate
 - Thiopental 1-6 mg/kg
 - Fentanyl 3-10 mcg/kg
 - Lidocaine 1-2 mg/kg
 - Hyperventilate
 - NMB
 - Intubate efficiently
- Bad Airway: AWAKE is an option
- Have other drugs ready: esmolol, NTP, NTG, hydralazine
Anesthesia and craniotomy for mass lesions
Positioning

- Supine Position for frontal/parietal/temporal cranis
- Head is inadvertently turned to one side
- Head Clamp is often placed. AVOID PATIENT MOVEMENT
- Poor positioning can lead to problems during the entire case
- Secure your lines before draping
- Put drips close to vein
Anesthesia and craniotomy for mass lesions
Maintenance of Anesthesia

- 2 overall techniques: Nitrous-narcotic-relaxant and balance anesthesia with volatile agent
 - Nitrous-narcotic-relaxant technique: 70% nitrous, 30% oxygen, narcotics (fentanyl 2-5 mcg/kg/min), pancuronium 0.02-0.05 mg/kg/hr
 - Balanced: 50-70% nitrous, muscle relaxant, volatile agent usually isoflurane 0.5-1 MAC
- TIVA (propofol, NMB, narcs, dex)
- Hyperventilate to PaCO$_2$ of 25-30
- No PEEP unless needed
- IVF= 0.9% NaCl; avoid dextrose containing and hypoosmolar solutions
- Can use hetastarch and albumin; remember fluid shifts are minimal
- Goals wrt to fluids in neuro: keep them dry but maintain CePP
Anesthesia and craniotomy for mass lesions
Emergence

- Emergence is as important as induction
- Extubation is important to allow for neurological examination of patient
- Sloppy emergence may result in sloppy outcome
- Sloppy emergence ---> Cerebral edema and hemorrhage among other things
- Extubate patients if normal criteria are met + if High ICP is not out of control
- Reverse NMB, control BP carefully with drugs and wake patient up once head clamp is
Anesthesia for Posterior Fossa Craniotomy

Introduction

- 3 main problems exist here
- Unusual Positioning
- Potential for brainstem injury
- Obstructive hydrocephalus
Anesthesia for Posterior Fossa Craniotomy
Obstructive Hydrocephalus

- Small lesions can have a significant effect on ICP as obstruction to CSF outflow can occur at the level of 4th ventricle and cerebral aqueduct
- Patient will probably get ventriculostomy prior to induction of anesthesia
Anesthesia for Posterior Fossa Craniotomy
Brainstem Injury

• Vital respiratory and circulatory centers can be injured by tumor, aneurysms and surgery itself
• Injury take the form of ischemia or infarction
• Clinical sequel include: postop apnea, aspiration, hypotension and bradycardia (and other rhythm disturbances)
Anesthesia for Posterior Fossa Craniotomy Positioning

- Most cases done in prone or lateral positions
- Rarely done in sitting positions (on exams)
- Most of the time, the head is above the heart regardless of position
- Head clamp and associated problems still present
- Advantage of sitting position: Less blood loss and better exposure
- Avoid injuries to peripheral nerves, ischial spine and head and eyes when positioning
Anesthesia for Posterior Fossa Craniotomy

Premedication

- Same as for supine tumors
Anesthesia for Posterior Fossa Craniotomy

Maintenance

- Same as supine crani’s
- Can avoid nitrous if sitting position or if the patient has pneumocephalus
- As always, turn off nitrous once dura is close in any crani case
- Use of nitrous oxide is very controversial in anesthesia
Anesthesia for Posterior Fossa Craniotomy Problems

- Positioning: covered already
- Pneumocephalus: just mentioned
- Postural hypotension
- Venous air embolism
Anesthesia for Posterior Fossa Craniotomy

Problems: Postural Hypotension

• Why does this happen:
 • Fluid restriction and diuresis
 • Position itself
 • Lower sympathetic tone with venous pooling in the presence of volatile agents
• Treat with vasopressors carefully rather than large amounts of fluid; perhaps lighten anesthesia too, compression stocking on
Anesthesia for Posterior Fossa Craniotomy Problems: Venous Air embolism

- Occurs when pressure within a vein is sub-atmospheric
- Incidence is about 40%
- Contributory factors: low CVP, poor surgical techniques
- Physiological consequences: F(rate and amount of air); small bubbles are well tolerated and are exhaled; if the lungs is overwhelmed then PAP increases, cardiac output decreases as RV after load increases
- PaCO_2 slight increase, PaO_2 decrease if amount small
- Full hemodynamic compromise if large amounts of air
- Paradoxical Air Embolus: Can lead to CVA or coronary artery occlusion. PAE occurs when RAP exceeds LAP in the presence of a patent foramen ovale
Anesthesia for Posterior Fossa Craniotomy

Problems: VAE; Monitoring

- TEE
- Precordial Doppler
- ETN$_2$, ETCO$_2$, Etvolatile agent
- Changes in PAP and CVP
- Changes in ECG and Blood Pressure (very late)
Anesthesia for Posterior Fossa Craniotomy
Problems: VAE; Placement of CVP

- Place multiorificed CVP at the junction of RA and SVC
- Easiest done with Fluoroscopy
- Also done with ECG looking for a biphasic p wave and then pulling back
Anesthesia for Posterior Fossa Craniotomy Problems: VAE: Treatment

- Surgeon flood area
- 100% O2 and turn off nitrous
- Aspirate CVP
- Fluids
- Vasopressors to correct hypotension
- Bilateral jugular compression
- PEEP (?); this may cause paradoxical embolism
- If all else fails: turn the patient to LLD position
- Finally start CPR in the supine position and prepare for Wednesday morning
Anesthesia for Aneurysms and AVMs
Preoperative Management

- Same goals as patients with tumors
- Most patients have normal ICP unless the aneurysm is ruptured
Anesthesia for Aneurysms and AVMs
Intraop Management

- Anesthetic technique very similar to tumors
 - Goals: Prevent rupture, ischemia and avoid/exacerbate vasospasm
- Few exceptions exist:
 - ICP may be normal so hyperventilation usually avoided unless it helps expose the aneurysm
 - Induced hypotension may be employed
 - Barbiturate coma may be needed
 - Potential for huge blood loss present
 - Hyperventilation also avoided in patients with vasospasm
- In cases of rupture: Get help fast; lower blood pressure if needed, 100% oxygen, prepare for barbiturate coma
Anesthesia for Aneurysms and AVMs

Intraop Management

- Make sure you have large bore IV access
- Can justify central line placement for access and intravascular volume measurement
- Cordis placement good idea especially in cases of large AVMs
Anesthesia for Aneurysms and AVMs

Extubation

- If extubation is planned, you need to have complete control of blood pressure. Have a plan ready and be ready to act fast.
- In case of large AVM’s, some advocate postop intubation because of risk of bleeding postop.
GDC

- Minimal invasive aneurysm surgery
- Anesthesia set up
- Our track record
- Problems: Bleeding (rupture) and ventriculostomy problems
- Goals: Like aneurysm
Carotid Endarterectomy
Preop Evaluation

- Most common surgery for patients with TIAs or carotid stenosis of >70%
- Normal H&P, labs as in all patients
- Attention paid to cardiovascular (HTN, CAD) and neurological disease (TIA, syncope, CVA)
- These patients are “true vasculopaths”
- Allows interpretation of postop deficits from existing ones
Carotid Endarterectomy
Anesthesia Management

- Goals of Anesthesia
 - Maintain CePP and CeBF
 - Critical part of case is during cross clamping of diseased artery; one is dependant on collateral flow
 - Some surgeons place shunts to decrease dependence on collateral circulation
 - Some place shunts when monitoring indicates need for one
 - Stump Pressure another way to “measure collateral flow”
Carotid Endarterectomy
Anesthesia Management: Monitors

- ASA monitors
- A-line: Positioning, rapid changes in BP, access for electrolytes and PaO2 and PaCO2
- Central Access: Not unless otherwise indicated
- Foley Monitor: usually no
- NMB Monitor: yes if GA
- Neurologic Monitors as needed: EPs, EEGs if GA
Carotid Endarterectomy
Anesthesia Management: Local Anesthesia

- Choice include local by surgeons and MAC by anesthesia
- Choice of superficial and deep cervical plexus block
- Advantage:
 - Monitor patients motor function
 - NOT ENTIRELY RELIABLE; CVAs can occur despite normal function intraop
- Disadvantage
 - Slow surgeons taking too long
 - Patient position, cooperation, coughing, claustrophobia
- No diff: Blood pressure management, risk of CVA, cerebral protection, better monitoring, risk of postop cardiovascular complications
Carotid Endarterectomy

Anesthesia Management: General Anesthesia

- Induction: Thiopental, Etomidate, propofol
- Maintenance: N20, isoflurane or other volatile anesthetic, narcotics and NMB
- Some administer thiopental 3-5 mg/kg immediately before clamping the carotid; no data to suggest barbiturates reduce morbidity after CEA
- Goal: maintain CePP: maintain blood pressure close to patients normal range if available
- Maintain BP: fluids and phenylephrine drip (10-80 mcg/min)
- Avoid HTN: Leads to cerebral edema especially in areas of ischemia that have lost auto regulation; also leads to increase myocardial work by increasing afterload
Carotid Endarterectomy
Anesthesia Management

- Ventilation: maintain PaCO$_2$ around 35. Do not hyperventilate (ischemia)
Carotid Endarterectomy
Anesthesia Management: Postop Problems

- Common Problems:
- BP lability: Hypotension and HTN in previously HTN patients
 - HTN: Treat with NTG and NTP
 - HTN: Mechanism: NK; perhaps secondary to denervation or altered sensitivity of carotid sinus
 - Hypotension: Also altered sensitivity of carotid sinus (shielded by plaque before)
- Tracheal compression due to hematoma formation
- Loss of carotid body function
- Myocardial Infarction
- CVA (most are embolic)
Brain Biopsy

- Function: Obtain brain tissue to determine course of action
- Anesthetic technique: MAC acceptable if patient is psychologically competent; GA otherwise
- Remote location: Have everything available
Trigeminal Decompression

- Function: To alleviate pain secondary to TG nerve compression
- Anesthetic: General Anesthesia as the procedure is very painful; Use of atropine or glycopyrolate to avoid vagal response.
- Also a remote location